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ABSTRACT

lIn 1368 Sherbrooke formulated the well known METRIC model for a two-
. | echelon inventory system consisting of a set of bases and a supporting depot.
The items stocked in the system are called recoverable items, that is, they
are subject to repair when they fail. Sherbrooke and others have proposed a
variety of algorithms for determining optimal base and depot stock levels.
A substantial portion of the computational requirement associated with each
of the algorithms is related to the search for the optimal depot stock level.
The purpose of this paper is to describe an easily implementable method for

estimating the optimal depot stock level. The computational experience re-

ported in the paper indicates the proposed method provides an excellent estimate
of the optimal depot stock level particularly for high demand items. Further-
more, the proposed method significantly reduces the computational requirements

for any known algorithm for solving Sherbrooke's problem.
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1. INTRODUCTION

In 1968 Sherbrooke2 presented a mathematical model of a two-echelon in-
ventory system consisting of a set of bases, at which primary demands occur,
and a supporting depot which resupplies the bases when necessary. The items
stocked in this system are called recoverable items, that is, items subject
to repair when they fail. Both the bases and depot serve two functions; they
are both inventory stocking points as well as locations at which maintenance
takes place. Each time a demand for an item is levied on a base supply organi-
zation, a corresponding requirement exists to perform maintenance on a failed
item. A base may lack adequately skilled technicians or equipment needed to
accomplish the repair. Only in these instances will a failed item be sent to
the depot for repair; otherwise, the base maintenance organization will repair
the item. The repairing location is responsible for resupplying the base
supply organization at which the.original demand was placed. All resupply is
done on a one-for-one basis.

Sherbrooke describes both the problem and its formulation and analysis in
detail in reference 2. In addition, Sherbrooke proposed a marginal analysis
algoritlm for solving the problem. Another approach has been suggested by Fox
and Landil for determining optimal base and depot stock levels. A substantial
portion of the computational requirement associated with both of these algorithms
is related to the search for the optimal depot stock level. As will be discussed
this search is particularly time consuming for items having a high expected
number of items in transit to the depot and in depot repair.

The purpose of this paper is to develop amethod for estimating the optimal
depot stock level which is both accurate and easy to implement. Computational

experience reported in this paper indicates the proposed method provides a very
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good estimate of the optimal depot stock level. Furthermore, the proposed
method significantly reduces the overall computational requirement for the

algorithms developed by Fox and Landi1 and Sherbrooke2.

2. BACKGROUND

The optimization problem posed in reference 2 by Sherbrooke for finding

optimal stock levels for the depot-base system described in Section 1 is

n m
min } } J (x - s, )p(x|x .T..(s iO))

j=1 i=1 x>sij 13713
subject to Z N Z s; ;= 5 (1)
i=1
sij = O,l,...,
where n is the number of bases,
m is the number of items,
S5 is the stock level at location Jj for item i,
Si0 is the depot stock level for item 1,
Xij is the expected daily demand rate for item i at base j,
c; is the unit cost for item i,
c is the budget constraint,
Tij(sio) is the average resupply time for base j for item i given
the depot stock level for item i is $50°
and p(x|xl] 1j 10)) * e-XlJTlJ( io)()ti.'l'.,(sio))x/x!, where p(x|-)

represents the probability of having x units in the resupply

system at any point in time.

oy




——ry
e

Furthermore, Sherbrooke shows that Tij(sio) can be expressed as

Tij(sio) = riinj + (l-rij)(Bij + 6(si0)°Di), (2)

where Aij is the average base repair time for item i at base 13,

rij is the proportion of demands requiring base repair for item i
at base j,
Bij is the average order-and-ship time at base j for item i,
Di is the average depot repair cycle time for item i,
s .l
(Sio N X—' Z (x-sio)p(x|AiDi), the expected depot delay per demand
*i0 for item 1,
A D
and Ai = z (l-rij)kij, the expected daily depot demand rate for item 1i.
j=1

Subsequently Fox and Landil proposed a Lagrangian formulation of Problem 1
and suggested a relatively simple method for solving the Lagrangian problem.
This approach requires only a small fraction of the time consumed by Sherbrooke's
method to obtain the optimal solution. Their Lagrangian formulation of the

problen is

min X Z I (x-s, )P(xlk Tials,0)) + @ Z Z L (3)
j=1 i=1 x>s, 13743 js0 i=2 * 1)
ij i
subject to sij = 0,1,000,

where 6 is a Lagrangian multiplier. Fox and Landi propose to solve Problem 1

by solving Problem 3 for a fixed finite set of multiplier values 60,...,6M.
In their approach, the "optimal" value of 6 1is the BK, Ke{0,...,M}, whose
total investment cost is closest to C. We will now see how the solution to

Problem 3 is found for a given value of 6.
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Observe that ProBlem 3 is separable by item. Consequently for each 8, its

solution can le obtained by selvine m independent itsm problems. To

simplify the no%atinn we drop the item desienator in what follows. Then for

each item for a.ziven 6 we solve a prehlen of the form

n
JZ CSj

n
min z Z (x-sj)p(x|AjTj(so)) + © !

j=1 x>s.
3 J
subject to Sj = 0,1,..., where j = 0,...,n. This problem can be partitioned

as follows:

n
min {ecso + ) min{ § (x-sj)p(x|AjTj(so))-fecsj: sj=0,l,..., So fixed}}.

s =0,1,... = . "
) Bkt j=1 sJ x>s.:l (1)

Problem 4 is not necessarily convex in 43 however, the inside minimization

problems are convex for a fixed value of Sye We may restate Problem 4 as
follows:
z(so;e)

min
so=0,l,...

where

A n
Z(s38) = s + } min{

j=1 . X>S,
i SJ 3 ]

(5)

To determine Z(soge), we must solve the n base problems of the form

min ) (x-sj)p(x|AjTj(so)) + Bes.. (8)

8, = 0gdigeae x>sj

i

It is easy to see that the optimal sj

integer for which

Y p(x|r,T.(s.)) < 6c. (7)
x>s, 3o

(x-sj)p(x|AjTj(so)) + 8cs.: sj = 0,1,..., 5, fixed}.

for Problem 6 is the smallest nonnegative

s

e
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To find the optimal solution to Problem 5 we must implicitly examine
Z(SO;O) for 8y = 0,1,... . In practice, however, the number of values for
Sy that need to be examined explicitly is small. This is due to the asympto-

tic behavior of c(so). Specifically, 5(50) approaches 0 quite rapidly

i

ey

as s, increases beyond )D. (Experience gained by the author in applying

e

ﬁ the Fox-Landi technique to real Air Force problems suggests that no more than
15 values for Sy need to be explicitly examined for any item.) Observe
that the amount of time required to solve Problem 1 using the Fox-Landi
algorithm is roughly proportional to the number of depot stock levels for
which Z(so;o) is explicitly evaluated. Computation time required by Sher-
brooke's algorithm to obtain the solution to Problem 1 is also proportional
to the number of depot stock levels examined. Consequently, if the number
of depot stock levels that are examined explicitly can be reduced, then the
total time required to find the optimal solution to Problem 1 can also be
reduced. ‘

In the next section we develop a method that provides an excellent esti-

mate of the optimal depot stock level. This method significantly reduces the

computation time required to find an optimal solution to Problem 1 using

either the Fox-Landi or the Sherbrooke algorithm.

Y - O

{ 3. THE ESTIMATION PROCEDURE

In the preceding section we indicated how the optimal base stock level,

:.§; call it sg, can be determined for a given value of so (and 6). In
e
_i* particular, we showed that s_..l is optimal if it is the smallest nonnegative
) \-;fﬁ
] %ﬁ; integer for which
i
%

(x|A.T.(s < fc.
xzs. . l J 3( O)) -
J
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We begin this section by developing a different but equivalent way of charac-
terizing s¥. We then show how to find an estimate of the optimal depot
stock level by solving a relaxed version of Problem 4 in which both the
nonnegativity and integrality requirements for s, are dropped.

Define the backorder function for base j for a given depot stock level

s, as
0

A L
Bj(sj,so) = XZS (x—sj)p(x|AjTj(so)), for 85 > 0 and integer,
3

and the convex piecewise linear completion of Bj’ call it B., as follows:
o

('Bj(t;so), if t is a nonnegative integer.
B..( g ) [
j t,so) B Bj(sjzso) e Bj(sj-l,so)](t'(sj’l)) + Bj(sj-l,so), Sj-l<t<sj,

. g z A
where 85 is a nonnegative integer, and Bj(-l;so) z ™,

-~ é s . ~ . [ 3 ] . i
Let ABj(sj,so) = Bj(sj,so) Bj(sj l,so) when sj is a nonnegative integer,

and

A i A
D(s.;s.) = {v: AB.(s.;s.) < v < AB.(s.+1l;s_)}.
J’O) gk sk 10 = L 0

Observe that Dj(sj;so)lHABj(sj;so)} is the set of subgradients of Bj at

O

s.. Then an alternative way of verifying that sg is an optimal base stock

level is to show that -6¢c ¢ D(sg;so). This alternative characterization of
oo
s. will be subsequently used in the development of the estimation procedure.
n
A

3 sq) T 1
n 0 521
both the integrality and nonnegativity restrictions on Sg» We obtain the

Next let F(sl,sz,...,s (Bj(sj;so) + ecsj). By dropping

following relaxation of Problem u:

L e
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min {ecso + ) min {F(sl,...,sn;so): So fixed}}. (8)
so sj-O,l,...
If Sy is the optimal solution to Problem 4, then
aF ‘.
'—~as + 6c = 0. (9)
0
n 9B, aT
F ;
But gs = I 37 3
0 3=1 3 0

Furthermore, by writing B.(s.;s.) as Z
1o K=1

Kp(K+sj|AjTj(so)), we see that
K+Sj~l K+Sj
B. ® -A.T. .T. © -2 T, ql
3 AT (so) (AJTJ(SO)) A]T](so) (AJT](SO))

3
T A.Ke KXx.e
aTj ke1 3 (K+sj~l)! j (K+sj)!

K=1

-AjAB(sj;so).

Let Bo(so) : Y (x-so)p(x|AD). Data gathered during the conduct of

x>s
]

the study showed that Bo(so) can be closely approximated by an exponential
function. This result should not be entirely surprising. The only probabilities
entering the backorder calculation are the so-called ''tail' probabilities.

In the upper tail, the Poisson distribution behaves almost like a geometric
distribution, that is, each succeeding probability is approximately a constant
proportion of the preceding value. This is particularly true for large

is large the expected number of

values of s Consequently, when s

0° 0
backorders existing at any point in time at the depot is approximately a

geometric function of s Thus an exponential function provides a continuous

0
approximation to the relationship between depot backorders and depot stock.

We therefore will approximate Bo(so) by the exponential function of the form




e e

=4

£ -b
! oso : s
a.e » Where a, and b0 are positive real numbers.

Then using this approximation we rewrite Tj(so) as

~b_ s
1 00
T.(s = r.A, + ~r. q =
J( o) T4 (1 r])(B] t 3 age )
and observe that
oT. (1-r, -b_s
= 3) a.b e LA
aso A 00
Upon combining these observations we see that
n & (1-r.) -b_s
%E_ ¥ y A. A& B(s.:s.) —Jatre e 0.
So ];1 0 A 00

0). Consequently -6c approximates the

marginal reduction in backorders at base Jj when the stock level at that

{ Recall that =8¢ ¢ D(sg;s

2 base is s¥. After making this substitution and representing this further

= approximation of %g— by %g-, we see that
; 0 0
;| - n -b s ~b_ s
E o oF z 1 00 00
- —= - (L-r.)A. = 6ca b e = -Bca.b e g
? s0 =1 A 00 00
e Substituting this approximation into Equation 9 we obtain the following

b estimate of the optimal depot stock level:

K ~ 1 i
» s = - = ln{——} . (10) 1
0 b0 aobO

Recall the value of s, was derived based on an exponential approximation
of Bo(so). As the average number of units in the depot repair cycle increases,
that is, as AD increases, the quality of this exponential approximation

improves in the region in which the optimal depot stock level should be located.

s i T e = e
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Consequently, the approximation should be most accurate in these cases. But
the items for which the search for thc optimal depot stock level is most time
consuming for both the Sherbrooke and Fox-Landi algorithms are the items

having a large number of units in depot repair. Therefore the proposed

approximation method will be most appropriate for those items requiring the
greatest amount of gomputation.

The approach we have described for estimating the optimal depot stock
level has been coded and tested using a sample of 40 items found on the
Air Force's new F~15 aircraft. The test consisted of two sets of runs. In
the first set, monthly flying was divided among 3 bases; in the second set,
the same monthly flying program was divided among 5 bases. The total budget
distributed among the 40 items ranged from $3% million to $65 million in the
first set of runs, and from $34% milljon to $88 million in the second set.
Table 1 contains the data indicating both the optimal and estimated depot
stock level for each item in both runs.

The data show that there usuvally is no single optimal depot stock level
for an item. Rather the optimal value depends on the amount of total item
system stock available for distribution among the depot and bases. The data
displayed in Table 1 also indicate the estimate of optimal depot stock is
quite close to the optimzl value in all cases. Furthermore, the increase
in expected system backorders using the estimated depot stock levels rather
than the optimal levels is generally small. For most items the increase is
substantially less than .1 backorders.

The results of the tests indicate that it is possible to estimate closely the
optiral depot stock level using Equation 10. Additionally, incorporating this
method for estimating the optimal depot stock into the Fox-Landi and Sherbrooke

algerithms will reduce the search required to find the optimal depot stock level




and will therefore reduce the computational time needed to solve

Problem 1 using these algorithms. In the tests, the computation time for
high demand items (AD > 20) was reduced by over 90 per cent. Consequently,

this approximation method is recommended for use particularly in situations

where expected depot demand is large.
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is related to the search for the optimal depot stock level. The purpose

of this paper is to describe an easily implementable method for estimating

the optimal depot stock level. The computational experience reported in the
paper indicates the proposed method.provides an excellent estimate of the
optimal depot stock level particularly for high demand items. Furthermore,

the proposed method.significantly reduces the computational requirements for any
known algorithm for solving Sherbrooke's problem.
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